Geometry	Name	
Similar Triangles (Theorems)	Date	Period

There are 3 ways you can prove triangles similar WITHOUT having to use all sides and angles.

Angle- Angle Similarity (AA[~]) – If two angles of one triangle are <u>congruent</u> to two corresponding angles of another triangle, then the triangles are similar.

In problems 1-8, determine whether the two triangles shown are similar. If so, state why (AA~, SSS~, SAS~) and complete the similarity statement.

State whether you can conclude that $\triangle ABC \sim \triangle DEF$ from the given information.

13. Given: $\triangle ABC$ and $\triangle DEF$, $\angle B \cong \angle E$, AB = 6. DE = 2. BC = 4. Find the length of EF for which $\Delta ABC \sim \Delta DEF.$ 6 x = 8 x = 4 3 6 x = 8 x = 13 13

14. Given: ΔRST and ΔUVW , RS = 6, UV = 8. ST = 9. RT = 12. Find lengths of VW and UW for

15. Given: $\triangle ABC$ and $\triangle DEF$. If $\angle B \cong \angle E$, state the proportion that must be true if $\triangle ABC \sim \triangle DEF$ by

SAS Similarity. AB = BC E

16. Given: ΔUAZ and ΔRBN . If $\angle U \cong \angle R$, state the proportion that must be true if $\Delta UAZ \sim \Delta RBN$ by

SAS Similarity.

