

Special Right Triangles

A COL

Special Right Triangles

Right triangles posses common relationships among their angles and sides. Here we will focus on 2 special right triangles: 45-45-90 and 30-60-90

Special Right Triangles

Right triangles posses common relationships among their angles and sides. Here we will focus on 2 special right triangles: 45-45-90 and 30-60-90

45 - 45 - 90 triangle

45-45-90 refers to the angles measurements. Given 2 angles are equal, we know this is a right isosceles triangle.

For each triangle, find the hypotenuse. Keep your measurements in simplest radical form.

45 - 45 - 90 triangle

45-45-90 refers to the angles measurements. Given 2 angles are equal, we know this is a right isosceles triangle.

Note any patterns:

30 - 60 - 90 triangle

30-60-90 refers to the angles measurements.

For each triangle, find the missing side. Keep your measurements in simplest radical form.

30 - 60 - 90 triangle

30-60-90 refers to the angles measurements.

Note any patterns:

Hypotenuse = Short Leg $\cdot 2$

Long Leg = Short Leg $\cdot\sqrt{3}$

30 - 60 - 90 triangle

Find the sides. Answer in simplest radical form.

Special Right Triangles

Find the sides. Answers in simplest radical form.

b)

d

