Use Pythagorean Theorem to classify each triangle as acute, right, or obtuse, given its side measurements.

1. 18, 24, 30

3. 20, 30, 40

5. 15, 20, 24

6. 24, 26, 10

7. 24, 10, 30

8. 5, 12, 13

9. 2, 6, $2\sqrt{10}$

$$2^{1} \cdot 6^{1} = (2\sqrt{10})^{1}$$
 $4 + 36 = 40$

10. 8, 12, $10\sqrt{2}$

11. $5\sqrt{2}$, 10, $3\sqrt{5}$

12. $3\sqrt{5}$, $4\sqrt{2}$, 8

Use your knowledge about triangles to determine the values of each variable.

E is the midpoint of \overline{AC} . D is the midpoint of \overline{BC} . \triangle ABE is isosceles having \angle AEB as its vertex angle. Round to the nearest tenth if necessary.

w = 7.5 $x = 4$	y = 10	z= //./
-----------------	--------	---------

4 510

30 | ?
?: 32.2
$$L(\overline{t}+5) = 32.2$$

 $2t+10 = 32.2$
 $2t=22.2$
 $2 = 11.1$

