In addition to <u>ALL</u> of the definitions, properties, postulates, and theorems from Geometry, we will be incorporating the following algebraic properties into our work.

Algebraic Properties of Equality	
Let <i>a</i> , <i>b</i> , and <i>c</i> be real numbers.	
Addition Property of Equality	If $a = b$, then $a + c = b + c$.
Subtraction Property of Equality	If $a = b$, then $a - c = b - c$.
Multiplication Property of Equality	If $a = b$, then $a \bullet c = b \bullet c$, $c \neq 0$.
Division Property of Equality	If $a = b$, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$.
Distributive Property	a(b+c) = ab + ac
Substitution Property of Equality	If $a = b$, then a can be substituted for b (or b for a) in any equation or expression.

Reflexive, Symmetric, and Transitive Properties of Equality

	Real Numbers	Segment Lengths	Angle Measures
Reflexive Property	a = a	AB = AB	$m \angle A = m \angle A$
Symmetric Property	If $a = b$, then $b = a$.	If $AB = CD$, then $CD = AB$.	If $m \angle A = m \angle B$, then $m \angle B = m \angle A$.
Transitive Property	If $a = b$ and b = c, then a = c.	If $AB = CD$ and CD = EF, then AB = EF.	If $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then $m \angle A = m \angle C$.

For each statement and its conclusion, state the definition, postulate, theorem, or property that justifies it.

1. Given: $\overline{AM} \cong \overline{WU}$ R N Conclusion: AM = WU11. Given: Why: _____ Conclusion: U is the midpoint of RN **2.** Given: E is the midpoint of \overline{BD} Why: _____ Conclusion: $\overline{BE} \cong \overline{ED}$ Why: _____ 12. Given: **3.** Given: A bisects \overline{CT} Conclusion: ∡8 and ∡9 are congruent Conclusion: $\overline{CA} \cong \overline{AT}$ Why: Why: **13.** Given: $m \measuredangle NAT + m \measuredangle WED = 90^{\circ}$ **4.** Given: CO = OLConclusion: $\measuredangle NAT \& \measuredangle WED$ are complementary Conclusion: $CO \cong OL$ Why: _____ Why: **14.** Given: $\overline{FA} \cong \overline{RM}$ **5.** Given: $\measuredangle DAY$ and $\measuredangle YAK$ are a linear pair. Conclusion: FA = RMConclusion: $\measuredangle DAY \& \measuredangle YAK$ are supplementary Why: Why: _____ **15.** Given: MA = TH**6.** Given: $\measuredangle TOM$ is the supplement of $\measuredangle SUE$ Conclusion: $\overline{MA} \cong \overline{TH}$ Conclusion: $m \measuredangle TOM + m \measuredangle SUE = 180^{\circ}$ Why: Why: _____ **16.** Given: $m \measuredangle AFD + m \measuredangle BAT = 180^{\circ}$ 7. Given: A and B lie in Plane JOG Conclusion: $\measuredangle AFD \& \measuredangle BAT$ are supplementary Conclusion: A and B are collinear Why: _____ Why: _____ **8.** Given: A is in the interior of $\measuredangle GLD$ Conclusion: $m \measuredangle GLA + m \measuredangle ALD = m \measuredangle GLD$ 17. Given: Why: _____ Conclusion: $\measuredangle FRO \cong \measuredangle ORG$ **9.** Given: \measuredangle 1 is the complement to \measuredangle 3 Conclusion: $m \measuredangle 1 + m \measuredangle 3 = 90^{\circ}$ Why: _____ Why: _____ **18.** Given: $m \measuredangle 2 = m \measuredangle 6$ Conclusion: $\measuredangle 2 \cong \measuredangle 6$ **10.** Given: $\measuredangle HAM$ is vertical to $\measuredangle EAT$ Conclusion: $\measuredangle HAM \cong \measuredangle EAT$ Why:

Why: _____

For each question, form a conclusion from the given information, and state the definition, postulate, theorem, or property that justifies it.

1.	Given: $\overline{TO} \cong \overline{AN}$	M K
	Conclusion:	
	Justification:	8. Given:
2.	Given: E is the midpoint of \overline{BD}	Justification:
	Conclusion:	••
	Justification:	9. Given: E F G
3.	Given: A bisects \overline{CT}	Conclusion:
	Conclusion:	
	Justification:	F D
4.	Given: CO = OL	10. Given:
	Conclusion:	Conclusion:
	Justification:	Justification:
5.	Given: $\measuredangle DAY$ and $\measuredangle YAK$ are a linear pair	11. Given: $m \measuredangle ABC = m \measuredangle HIJ$
	Conclusion:	Conclusion:
	Justification:	Justification:
6.	Given: $\measuredangle TOM$ is the supplement of $\measuredangle SUE$	12. Given: $\measuredangle CAT$ and $\measuredangle RAP$ are vertical angles.
	Conclusion:	Conclusion:
	Justification:	Justification:
7	$\begin{array}{c} T \\ T \\ M \\ 6 \\ 5 \\ S \\ U \\ \end{array}$	13. Given: $\measuredangle SAT \cong \measuredangle ACT$
/.	Graduation -	Conclusion:
		Justification:
	Justification:	14. Given: A is in the interior of $\measuredangle GLD$
		Conclusion:
		Justification:

15. Given: $\overline{FA} \cong \overline{RM}$	
Conclusion:	21. Given:
Justification:	Conclusion:
16. Given: $\measuredangle HAM$ is vertical to $\measuredangle EAT$	Justification:
Conclusion:	M* I -
Justification:	K
• + • + •	22. Given:
R U N 17. Given:	Conclusion:
Conclusion:	Justification:
Justification:	23. Given: $\measuredangle PAI$ and $\measuredangle IAR$ are a linear pair
× 8	Conclusion:
18. Given;	Justification:
Conclusion:	24. Given: $\measuredangle CAT$ and $\measuredangle RAP$ are complementary
Justification:	angles.
19. Given: $m \measuredangle NAT + m \measuredangle WED = 90^{\circ}$	Conclusion:
Conclusion:	Justification:
Justification:	25. Given: $m \measuredangle NAT + m \measuredangle WED = 180^{\circ}$
20 Circum IIP biggets (PUV	Conclusion:
20. Given: UB bisects <u>XRUI</u>	Justification:
	26. Given: A is between I and M
Justification:	Conclusion:
	Instification:
	Justification