Name

Date _____

In addition to <u>ALL</u> of the definitions, properties, postulates, and theorems from Geometry, we will be incorporating the following algebraic properties into our work.

Algebraic Properties of Equality

Let a, b, and c be real numbers.

Addition Property of Equality If
$$a = b$$
, then $a + c = b + c$.

Subtraction Property of Equality If
$$a = b$$
, then $a - c = b - c$.

Multiplication Property of Equality If
$$a = b$$
, then $a \bullet c = b \bullet c$, $c \ne 0$.

Division Property of Equality If
$$a = b$$
, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$.

Distributive Property
$$a(b+c) = ab + ac$$

Substitution Property of Equality If a = b, then a can be substituted for b

(or b for a) in any equation or expression.

Reflexive, Symmetric, and Transitive Properties of Equality

	Real Numbers	Segment Lengths	Angle Measures
Reflexive Property	a = a	AB = AB	$m\angle A = m\angle A$
Symmetric Property	If $a = b$, then $b = a$.	If $AB = CD$, then $CD = AB$.	If $m\angle A = m\angle B$, then $m\angle B = m\angle A$.
Transitive Property	If $a = b$ and $b = c$, then $a = c$.	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then $m \angle A = m \angle C$.

1. Given: $AM \cong WU$	R N
Conclusion: $AM = WU$	11. Given:
Why: Def of = segments	Conclusion: U is the midpoint of \overline{RN}
2. Given: E is the midpoint of \overline{BD} Conclusion: $\overline{BE} \cong \overline{ED}$	Why: Midpoint Thm
Why: Midpoint Thin	12. Given:
3. Given: A bisects \overline{CT}	Conclusion: ∠8 and ∠9 are vertical
Conclusion: $CA \cong AT$	0.00
Why: Nef. of a birector	Why: Def of viril. & 5
4. Given: CO = OL	13. Given: $m \angle NAT + m \angle WED = 90^{\circ}$ Conclusion: $\angle NAT \& \angle WED$ are complementary
Conclusion: $\overline{CO} \cong \overline{OL}$,
Why: Pefof = segments	Why: Def of comp. X 1
	14. Given: $\overline{FA} \cong \overline{RM}$
5. Given: ∠DAY and ∠YAK are a linear pair. Conclusion: ∠DAY & ∠YAK are supplementary	Conclusion: $FA = RM$
Why: Linear pairs are supp.	Why: Of of ≈ segments
willy	15. Given: MA = TH
6. Given: $\angle TOM$ is the supplement of $\angle SUE$ Conclusion: $m\angle TOM + m\angle SUE = 180^{\circ}$	Conclusion: $\overline{MA} \cong \overline{TH}$
Why: Dof of supp. x's	Why: Oel 1 = segments
7. Given: A and B lie in Plane JOG Conclusion: A and B are collinear	16. Given: $m \angle AFD + m \angle BAT = 180^{\circ}$ Conclusion: $\angle AFD \& \angle BAT$ are supplementary
Why: Dof. of collinear pts	Why: Def of supp. 25
8. Given: A is in the interior of $\angle GLD$	F O
Conclusion: $m \angle GLA + m \angle ALD = m \angle GLD$	R G
Why: Angle Addition Post	17. Given:
9. Given: ∠1 is the complement to ∠3	Conclusion: $\angle FRO \cong \angle ORG$
Conclusion: $m \angle 1 + m \angle 3 = 90^{\circ}$	Why: Dy of Angu Bisector
Why: Dof. of comp x's	•
10. Given: $\angle HAM$ is vertical to $\angle EAT$ Conclusion: $\angle HAM \cong \angle EAT$	18. Given: $m \angle 2 = m \angle 6$ Conclusion: $\angle 2 \cong \angle 6$
Why: Verl . x & thm	Why: Dof 1 = 45

Name _____

Date _____

1. Given: $\overline{TO} \cong \overline{AN}$

Conclusion: $T_0 = AN$

Justification: Def 1 = seg

2. Given: E is the midpoint of \overline{BD}

Conclusion: BE = FD BE = FD

Justification: MIZpt. Thu Neff MIZpt

3. Given: A bisects \overline{CT}

Conclusion: (A = AT)

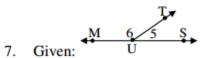
Justification: Def of bisoctor

4. Given: CO = OL

]

Conclusion: Co & al

Justification: 10 of g = seg.


Given: ∠DAY and ∠YAK are a linear pair
 Conclusion: ∠DAY, x VAS one sugge.

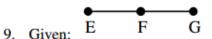
Justification: Li nen pais are nypp

6. Given: ∠TOM is the supplement of ∠SUE

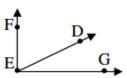
Conclusion: ¬↑ TOM¬ ¬ ¬ ¬ SUE: 180

Justification: Nof y supp. 45

Conclusion: m26+m15=180


Justification: Linein places one supp.

8. Given:


Conclusion: m<7 + w<5 = 90

Justification: Dof of comp. 75

Conclusion: EF+F6:EG

Justification: Sy. Add. Rst.

10. Given:

Conclusion: Mx FED+ m 2 DEG = m 2 F EG

Justification: Angu Add. Pist

11. Given: $m \angle ABC = m \angle HIJ$

Conclusion: ** 本格でき ** サルナブ

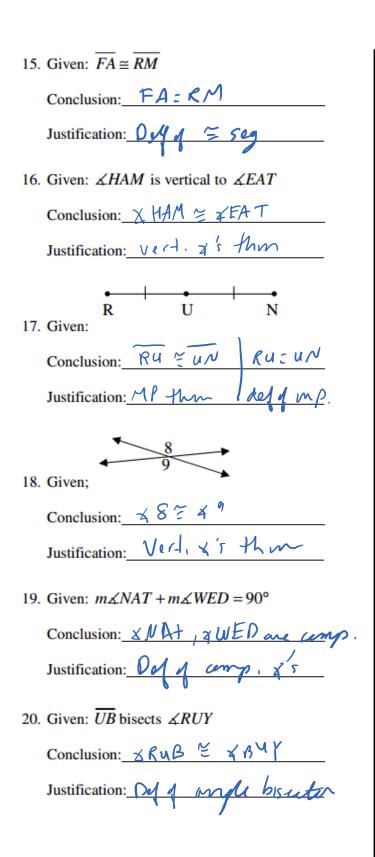
Justification: Def a 2 5

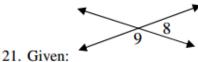
12. Given: ∠CAT and ∠RAP are vertical angles.

Conclusion: $\frac{\cancel{4} \cancel{CAT}}{\cancel{CAT}} \stackrel{\sim}{=} \cancel{\cancel{4} \cancel{RAP}}$

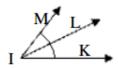
Justification: Vert & & Them

13. Given: $\angle SAT \cong \angle ACT$


Conclusion: M & SAT = m < ACT


Justification: Not 1 = 45

14. Given: A is in the interior of ∠GLD


Conclusion: m2 QA +m2-ND= m x GLD
Angle Add. Post.

Justification:

Conclusion: 48 and 49 are supp.

- 22. Given:

 Conclusion: m/MJC+m*{IK: mc/MJK}

 Justification: Angle ADA. Post.
- 23. Given: $\angle PAI$ and $\angle IAR$ are a linear pair

 Conclusion: $\angle PAI$ and $\neq \pm AR$ are supp.

 Justification: 1, hear pairs are supp.
- 24. Given: ∠CAT and ∠RAP are complementary angles.

Conclusion: $m\chi(A+1)m\chi(AP=96)$ Justification: $p_{s} = q_{s} = q_{s} = q_{s}$

- 25. Given: $m \angle NAT + m \angle WED = 180^{\circ}$ Conclusion: $NAT + m \angle WED = 180^{\circ}$ Justification: $NAT + m \angle WED = 180^{\circ}$
- 26. Given: A is between J and M

 Conclusion:

 JA JAM JM

 Justification:

 Seg. ADA, Post