Partitioning a Directed Line Segment

A directed line segment AB is a segment that represents moving from point A to point B. The following example shows how to use slope to find a point on a directed line segment that partitions the segment in a given ratio.

Partitioning a Directed Line Segment

Find the coordinates of point P along the directed line segment AB so that the ratio of AP to PB is 3 to 2.

SOLUTION

In order to divide the segment in the ratio 3 to 2, think of dividing, or partitioning, the segment into 3 ± 2 , or 5 congruent pieces.

Point P is the point that is $\frac{3}{5}$ of the way from point A to point B.

Find the rise and run from point A to point B. Leave the slope in terms of rise and run and do not simplify.

slope of
$$\overline{AB}$$
: $m = \frac{8-2}{6-3} = \frac{6}{3} = \frac{\text{rise}}{\text{run}}$

To find the coordinates of point P, add $\frac{3}{5}$ of the run to the x-coordinate of A, and add $\frac{3}{5}$ of the rise to the v-coordinate of A.

run:
$$\frac{3}{5}$$
 of $3 = \frac{3}{5} \cdot 3 = 1.8$
rise: $\frac{3}{5}$ of $6 = \frac{3}{5} \cdot 6 = 3.6$

So, the coordinates of P are

$$(3 + 1.8, 2 + 3.6) = (4.8, 5.6).$$

The ratio of AP to PB is 3 to 2.

Day - 8 1/6 - 7.5 Rus = 3 8/6 -> - 7.5 P(-1.5, -1.5)

In Exercises 3-6, find the coordinates of point P along the directed line segment AB so that AP to PB is the given ratio. (See Example 1.)

5.
$$A(1, 6), B(-2, -3); 5 to 1$$

6.
$$A(-3, 2), B(5, -4); 2 to 6$$