Segment Bisectors and Congruence

- 1. Line RS bisects \overline{PQ} at point R. Find RQ if PQ = 14 centimeters.
- 2. Line JK bisects \overline{MN} at point J. Find MN if $\overline{JM} = 6\frac{3}{4}$ feet.
- **3.** Point T bisects \overline{UV} . Find UV if $UT = 4\frac{1}{2}$ yards.
- **4.** Point C bisects \overline{AB} . Find \overline{CB} if $\overline{AB} = 14.8$ meters.
 - **5.** Find *LN*.

6. Find *AM*.

7. Find *MR*.

$$\frac{4x-12}{R}$$
 $\frac{-2x+21}{M}$ $\frac{1}{R}$

11. Find AM.

Challenge Questions.

CD = 3x+2

BC = y+2

AB = 12x-2

EB = y

BF = 4y + 1

Find AC and EF.

* EXTENDED RESPONSE As shown, a path goes around a triangular park.

- a. Find the distance around the park to the nearest yard.
- b. A new path and a bridge are constructed from point Q to the midpoint M of \overline{PR} . Find QMto the nearest yard.
- c. A man jogs from P to Q to M to R to Q and back to P at an average speed of 150 yards per minute. About how many minutes does it take? Explain.

